Chào mừng quý vị đến với website của ...

Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tài liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.

tài liệu ôn thi hsg Casio 9

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn: sưu tầm
Người gửi: Vũ Anh Sang (trang riêng)
Ngày gửi: 23h:28' 27-09-2012
Dung lượng: 3.7 MB
Số lượt tải: 135
Số lượt thích: 0 người
Phần I: Các bài toán về đa thức
1. Tính giá trị của biểu thức:
Bài 1: Cho đa thức P(x) = x15 -2x12 + 4x7 - 7x4 + 2x3 - 5x2 + x - 1
Tính P(1,25); P(4,327); P(-5,1289); P()
H.Dẫn:
- Lập công thức P(x)
- Tính giá trị của đa thức tại các điểm: dùng chức năng 
- Kết quả: P(1,25) = ; P(4,327) =
P(-5,1289) = ; P() =
Bài 2: Tính giá trị của các biểu thức sau:
P(x) = 1 + x + x2 + x3 +...+ x8 + x9 tại x = 0,53241
Q(x) = x2 + x3 +...+ x8 + x9 + x10 tại x = -2,1345
H.Dẫn:
- áp dụng hằng đẳng thức: an - bn = (a - b)(an-1 + an-2b +...+ abn-2 + bn-1). Ta có:
P(x) = 1 + x + x2 + x3 +...+ x8 + x9 = 
Từ đó tính P(0,53241) =
Tương tự:
Q(x) = x2 + x3 +...+ x8 + x9 + x10 = x2(1 + x + x2 + x3 +...+ x8) = 
Từ đó tính Q(-2,1345) =
Bài 3: Cho đa thức P(x) = x5 + ax4 + bx3 + cx2 + dx + e. Biết P(1) = 1; P(2) = 4; P(3) = 9; P(4) = 16; P(5) = 25. Tính P(6); P(7); P(8); P(9) = ?
H.Dẫn:
Bước 1: Đặt Q(x) = P(x) + H(x) sao cho:
+ Bậc H(x) nhỏ hơn bậc của P(x)
+ Bậc của H(x) nhỏ hơn số giá trị đã biết của P(x), trongbài bậc H(x) nhỏ hơn 5, nghĩa là:
Q(x) = P(x) + a1x4 + b1x3 + c1x2 + d1x + e
Bước 2: Tìm a1, b1, c1, d1, e1 để Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0, tức là:
 ( a1 = b1 = d1 = e1 = 0; c1 = -1
Vậy ta có: Q(x) = P(x) - x2
Vì x = 1, x = 2, x = 3, x = 4, x = 5 là nghiệm của Q(x), mà bậc của Q(x) bằng 5 có hệ số của x5 bằng 1 nên: Q(x) = P(x) - x2 = (x -1)(x - 2)(x - 3)(x - 4)(x - 5)
( P(x) = (x -1)(x - 2)(x - 3)(x - 4)(x - 5) + x2.
Từ đó tính được: P(6) = ; P(7) = ; P(8) = ; P(9) =
Bài 4: Cho đa thức P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 5; P(2) = 7; P(3) = 9; P(4) = 11. Tính P(5); P(6); P(7); P(8); P(9) = ?
H.Dẫn:
- Giải tương tự bài 3, ta có: P(x) = (x -1)(x - 2)(x - 3)(x - 4) + (2x + 3). Từ đó tính được: P(5) = ; P(6) = ; P(7) = ; P(8) = ; P(9) =
Bài 5: Cho đa thức P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 1; P(2) = 3; P(3) = 6; P(4) = 10. Tính 
H.Dẫn:
- Giải tương tự bài 4, ta có: P(x) = (x -1)(x - 2)(x - 3)(x - 4) +  . Từ đó tính được: 
Bài 6: Cho đa thức f(x) bậc 3 với hệ số của x3 là k, k ( Z thoả mãn:
f(1999) = 2000; f(2000) = 2001
Chứng minh rằng: f(2001) -
 
Gửi ý kiến